
The Birthday Paradox – Draft -  Copyright ©2018 Ed Ramsden

Chapter

X    

The Birthday Paradox 

The Birthday Paradox [1] is a well-known example of the non-intuitive 
nature of probability and statistics. The 'paradox' is that although there 
are 365 days in a year (not counting leap years), when you have a group 
of 23 people, there is slightly more than an even chance  (50.7%) that 
two or more of those people will share a common birthday (month and 
day).  While there is nothing 'paradoxical' about this phenomenon, it is 
certainly surprising as there are 365 days in the year, and one might 
expect a much lower likehood of shared birthdates in such a small crowd. 
As the number of people increases, the likelihood of shared birthdays 
also grows -  and rapidly.  Figure X.1 shows how the likelihood of a 
match increases with the number of people in the group.  For 50 people, 
there is a 97% chance of a match, while for 89 people, there is a 99.999+
% chance of a shared birthday – pretty good odds!

Figure X.1
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An explanation for this apparent 'paradox'  can be found through a simple 
application of probability theory.  One of the most straighforward 
approaches to calculating the probability of coincidence is to first 
calculate the opposite -  the probability that people don't share a common 
birthday.  For the case of two people, the likelihood that they do not 
share a birthday is 364/365, as the first person's birthday falls on some 
given day (we don't care which), and the second person's birthday 
therefore has 364 opportunities to not coincide with the first person's.  If 
we consider a third person (N=3), he or she has only 363 opportunities 
not to share a date with the first two – who we already are assuming have 
birthdays that fall on different days.   By induction, we can generalize 
this into an expression (eqn. X.1) for the probability (which ranges from 
0 to 1) that in any group of N people, none share birthdays:

PNot Share =
365−1

365
× ... ×

365−(N −1)
365

eqn X.1

Once we know the probability that no two people in the group share a 
birthday, obtaining the probability that at least two people do share a 
birthday can be found by simply subtracting the above expression (eqn 
X.1) from '1',  yielding equation X.2:

PShare = 1−PNot Share = 1 −
365−1

365
×... ×

365−(N−1)

365
(eqn. X.2)

Of course, there are some assumptions behind the above analysis. The 
first is that we are completely ignoring people born on February 29th, 
which only occurs on leap years (every 4 years). The second, and more 
significant assumption is that birthdays are uniformly distributed among 
the 365 days of the year, which is definitely not the case in at least some 
places [2].  An uneven distribution, however, can work in favor of more 
shared birthdays.

While  deriving the the above formula for describing the probability of 
two people in a group sharing a birthday  is relatively straightforward,  
deriving an expression for the probability of three or more people having 
a common birthday is considerably more difficult – but it is possible and 
has been done [3].  The expressions, however, are quite complex and 
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involve calculating large factorials, which can be numerically 
challenging. Using a simulation model to obtain a probability estimate, 
however, is a much simpler approach to solving this problem – although 
the downside of simulation is that we will lose the exactitude of an 
analytic result and have to make do with approximate solutions. 

So how does one go about building a simulation model for estimating 
probability?  Consider the case of measuring the probability that a coin 
toss will come up heads, as opposed to just assuming a value (say 50%).  
A single coin toss gives you a heads/tails result – not a probability value. 
To estimate the probability of getting heads requires two things:

1) An 'experiment' you can perfom that yields heads or tails (not 
heads). This is a single coin toss. 

2) A process that performs a statistically meaningful number of 
iterations of the above experiment, from which you can estimate 
the probability of getting heads – the number of times heads 
appears out of the total number of experiments (tosses). 

In the case of our birthday problem, the 'experiment' that needs to be 
done is to consider a group of 'N' people with randomly distributed 
birthdays, and then check whether 'M' of them share a common birthday.  
This experiment will yield a result of 'true' if M people share a birthday, 
and 'false' if they do not. For example, if N=35 and M=3,  the experiment 
will look at the birthdays of 35 people, and only return a 'true' result if 
three (or more) share a date. 

While it is certainly possible to perform this 'experiment' in the real 
world by roudning up a group of people and querying them all for their 
birthdays, the goal here is to build a simulation model of the experiment 
that is (presumably) a lot less effort to run.  One way of  implementing 
this simulation experiment is shown in Figure X.2,  the function 
RunExperiment:
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RunExperiment(N as integer, M as integer) as boolean

// Inputs: N – number of people in group
// M – Number of people with same birthday
// Returns: TRUE if M or more people share a 
birthday,
// FALSE if fewer than M people share a 
birthday

dim R as new random 
        
dim birthdaycount(365) as integer  

dim i as integer, day as integer

for i = 1 to N

  day = R.InRange(1,365) ' Random day from 1..365
  birthdaycount(day) = birthdaycount(day) + 1
  if birthdaycount(day) >=M then return TRUE 
 
next i

return FALSE  ' Matches not found
'END

Figure X.2 – Code for Function RunExperiment

Function RunExperiment first defines, and celars an array of 365 
counters, corresponding to days of the year (ignoring the leap year 
question completely).  It then models the group of N people by 
sequentially selecting N random year-days in the range of 1...365 using 
the InRange function of random number generator object R.  For each of 
those random dates, RunExperiment increments the corresponding day 
counter, and exits with a return value of true if any of the counts equals 
or exceeds M. Note that this can occur before all N birthdates have been 
tallied if there is a sufficient matched set.  Finally, if no suitable match 
sets have been found, the function returns a value of false. 

Now that we have the algorithmic equivalent of a coin-toss experiment 
for our birthday problem, the next step is to iterate the experiment, 
collect a tally of true results versus the total number of trials, and report 
the results. Since the expected results from our experiment are just a list 
of numbers, this doesn't require a graphic user interface (GUI) and can be 
implemented as the command-line program shown in Figure X.3
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Application.Run(args() as string) as Integer
const TRIALS = 10000
const N_MAX = 100
const M = 2

dim N as integer, trial as integer
dim truecount as integer 

print "N    P"
for N = M to N_MAX
  truecount = 0
  for trial = 1 to TRIALS
    if RunExperiment(N, M) then truecount = 

truecount+1
  next trial
  print format(n,"##0") + "  " + 
format(truecount/TRIALS, "0.000000") 
next N

call input   ' wait for user input – 
' keeps text window from 
' closing at end of program

'END

Figure X.3– Top level of Birthday Simulation Program

There are several things going on in the Application.Run function. First, 
ift contains an outer loop that iterates values of N from M to N_MAX – 
enabling the function to print a table of probabilities  for a range of N 
values. Next, in its inner loop, executes the RunExperiment function 
TRIALS times (10000), keeping track of the number of times there is a 
set of M birthday matches.   If you run the program, you get an output 
like the following (Figure X.4, truncated for brevity):

N   P
2  0.0018000
3  0.0084000
4  0.0170000
5  0.0250000
6  0.0395000
7  0.0562000
8  0.0759000
9  0.0963000
10  0.1179000
11  0.1454000
12  0.1725000
13  0.1903000
14  0.2212000

.

Figure X.4 – Sample Output of Program, M=2
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Now that we have a simulation model that executes and provides output, 
the next questions are   (1) whether the model it embodies reflect reality 
to a useful degree and (2) whether it is implemented correctly.   For this 
system, we are in luck in the verficiation and validation departments, as 
we have already developed an analytic solution for the case of M=2 (two 
people share birthdays).  For this case, we can the simulation model by 
running it and comparing the simulation results to the known analytic 
results at some number of points, as shown in Table X.1. 

N P Sim ulated P Analytic Difference
2 0.0030 0.0027 0.0003
3 0.0091 0.0082 0.0009
4 0.0164 0.0164 0.0000
5 0.0304 0.0271 0.0033
20 0.4130 0.4114 0.0016
21 0.4334 0.4437 -0.0103
22 0.4794 0.4757 0.0037
23 0.5042 0.5073 -0.0031
24 0.5475 0.5383 0.0092
25 0.5651 0.5687 -0.0036
35 0.8192 0.8144 0.0048
36 0.8314 0.8322 -0.0008
37 0.8437 0.8487 -0.0050
38 0.8644 0.8641 0.0003
39 0.8800 0.8782 0.0018

Table X.1 – Simulated vs Analytic Results for Selected N , M=2

You can see that the simulated results are close to the analytic ones – 
close enough to provide at least tentative credibility.  Assuming the 
model is good, the questions now are whether the model is accurate 
enough to be useful, and if not, how can we improve it?

The notion of of whether a simulation model is 'accurate enough' is 
driven by the purpose for which it is employed.  In the case of the 
birthday problem, the purpose of the model is ultimately to have 
something to amaze people with at a gathering – if the probability 
estimates are off by a few percent, the worst-case end results may be a 
little embarassment at being wrong.  In contrast, a model used to provide 
probability estimates for use in a high-frequency stock trading system 
might require more precision – in this application, a few percent error 
could make the difference between retiring in luxury in Hawaii and 
retiring in a cardboard box under a bridge. 

One factor controlling the accuracy to which we can estimate 
probabilities in this kind of 'coin-toss' experiment is the number of 
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replications conducted. At a fundamental level, the number of 
replications controls the resolution to which you can measure probability. 
For example, consider a 50-50 coin-toss experiment. If you toss the coin 
10 times, you will get probability estimates with a resolution of 0.1 (0.0, 
0.1, 0.2...). To be able to resolve probability down to the 0.001 level 
requires tallying the results of 1000 or more tosses – this is a simple 
consequence of the arithmetic used to turn a heads/tails tally into a 
probability estaimate. 

Another less intuitive aspect of accuracy is the natural variation in a 
collection of random events. Continuing with our coin-toss experiment, 
if you were to toss an unbiased coin (truly 50-50 changes of heads or 
tails) 100 times, you would be unlikely to see exactly 50 heads and 50 
tails appear – although the actual results would likely be 'close', and will 
tend to get even closer if you performed more replications.

In the birthday problem simulation model, you may have noticed that we 
chose 10,000 trials, which may seem to be an awfully large number. This 
was chosen for two reasons. First, it provides the ability to resolve 
probability to 1 part in 10,000 ( 0.0001 or 0.01%), which is far below the 
level of a percent or two which may be of interest in this application. 
Secondly, we are not flipping coins manually, and running 10,000 
iterations of this experiment is not particularly difficult.  Figure X.5 
shows the results of running the simulation model with both 100 trials, 
and 10,000 trials, overlaid on the analytic (exact) model.  In the 100 trials 
case, you can see quite a bit (several percent) of error, while the 10,000 
trials case is almost visually indistinguishable from the analytic model 
when plotted.

 

Figure X.5– 100 and 10,000 Trials vs. Analytic Results
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Now that we have a model that seems to work, and have some idea of 
how to control error to acceptable limits, let's run it to find the 
probabilities of three people sharing a common birthday (M=3).  Figure 
X.6 is a plot of the probabilities for N=3 to 100. 

Figure X.6– Probability of three People Sharing a Birthday vs.  
Groupsize (N)

Using our 'precision calibrated eyeball', it appears that the group size 
needed to get a 50% probability of three coincident birthdays is in the 
mid 80's. Table X.2 shows numerical detail for this region of the graph.

Table X.2 Probability of Three People Sharing Birthday, N=80...90

Note that in this case, we ran the simulation twenty times, so as to be 
able to obtain a mean value, which one might expect to have a lower 
error than that of individual runs (hopefully!). Multiple runs also allows 
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N Mean StDev
80 41.73% 0.50%
81 43.02% 0.52%
82 43.81% 0.51%
83 45.58% 0.84%
84 46.26% 0.56%
85 47.55% 0.47%
86 48.94% 1.00%
87 49.61% 0.38%
88 50.87% 0.72%
89 51.93% 0.47%
90 53.34% 0.42%
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us to obtain standard deviation, which provides an indication of how 
much the individual simulations vary from the mean.  From these results, 
it is difficult to say exactly which group size provides a 50% chance of 
having three coincident birthdays, but it would appear that it is likely to 
be between 86 and 89. for purposes of impressing an audience, this is 
probably a 'good enough' result – especially since it is a smaller number 
than one might initially guess (not counting leap years, it takes 731 
people to guarantee a three-way match – 365 x 2 + 1).

To conclude, this essay has demonstrated how a simple and easy-to-
create simulation model can be used to obtain results that otherwise 
would require complex analysis of considerable sophistication. The 
downside of the simulation model is that it doesn't provide exact 
answers, but for applications such as the one explored here,  approximate 
results with known error may be 'good enough' for most practical 
purposes.  

Problems:

1) As previously noted,  births are not uniformly distributed over 
the year. What modifications would need be made to the model 
to account for different likelihoods of births from month-to-
month?

2) We saw that the statistical error of the simulation is related to the 
number of trials considered.  One approach to reducing error is 
to keep increasing the number of trials and and then 
statatistically  analyze the results of multiple runs, repeating until 
the desired error is achieved. For a binomial experiment, 
however, such as a coin toss or the result of the RunExperiment 
function the standard deviation ( σP ) of the estimated probability 
(P) can be estimated [4] by the expression

σP=√ P×(1−P )

Trials

Can you create a simulation that will calculate the probability 
with just enough trials to achieve a given standard deviation?
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