
  

    The Problem – Optimizing Airplane Boarding

1 ) It can take a lot of simulations to optimize a system, especially 
           if genetic or evolutionary methods are used.

2)  These simulations can be very time consuming (hours, days).
     3)  Methods of speeding up discrete simulations? 

   Paths to Parallel Computing:

1) GA/EAs evaluate a lot of models independently, just throw each simulation
     model on a separate processor (embarassingly easy parallelism!).
2) Try to parallelize individual models. Interprocess communications can take 

          more time than the model proper (dumb & hard parallelism)
3) Parallel Discrete Event models – This can get complex and can 

have diminishing returns quickly depending on model structure. 
     4)  Specialized Computing Hardware. (Brute force & Ignorance)

 That Is this project !

   Favorable Model Characteristics:

1) Model can be decomposed to simple state machines.
2) Mostly static topology – limited or no dynamic reconfiguration. 
3) Short data words. (no floating point!)
4) Limited data passed between state machines.
5) Ratio of model computation to transferred data high – otherwise host 

CPU becomes bottleneck,  
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BOARDING QUEUE 

Structure PassengerType
  Row As Integer
  Seat As Integer

Structure SeatType
  Occupied As Boolean
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AISLE 

Structure AisleSlot
  State As AisleState
  Timer As Integer
  Passenger As PassengerType

Each 'Aisle Slot' is modeled as a state machine that allows for blocking behavior. Key parameters are:

Passenger Advance Time – How fast the passenger moves down the aisle when not blocked. (assumed 
uniform for all passengers)

Seating Time – how long it takes a passenger to move from the aisle to his seat when he arrives at his 
seating row. This time is dependent on how many people he needs to bypass to get to his seat (0, 1 or 2)

Aisle Cell Communications

'Time-driven' Simulation Flow
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Design and Specification
Of Logic in Hardware Design Language
(Verilog example) 

1) Compilation to primitives & netlist
2) 'Fitting' into target FPGA
3) Generating 'bitstream'
4) Downloading to blank chip
5) 'Rinse and Repeat' until it works

     Software simulation of the logic design is a big help here!

'Floorplan' showing utilization of 
FPGA logic cells & physical 

locations on chip

Cell Interconnection Diagram
(bird's eye view!)

Cell detail showing internal logic & routing. 
Each cell shown above contains 4 of these 

blocks.
Each block has two 4-input logic look-up 

tables and two flip-flops (single-bit registers)

The FPGA has a total of 3432 of these blocks.

Dedicated 9kbit memory (RAM/ROM)
The FPGA has a total of 240kbits

Looks like C, but with some BIG differences....

1) Not just a sequential process, but a mixture of
 seqential and continuous processes.

2) Allows for event-driven processes at a fine granular
 level (ex: always @(xxxx) construct)

3) Defines intrinsically parallel processes – 
None of this processor task-switching nonsense!

4) Not every valid 'program' you can write can be realized 
in an FPGA  (must understand hardware capabilities!)
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SYSTEM/CPU 'dT' Execution 
Time

Time for 5000 'dT' 
Simulation 

Number of 5000 'dT' 
simulations per 

second

FPGA Demo 
44.3 Mhz clock

22.6 nsec 112 usec 8929

Intel E5300 2.6GHz 1384 nsec 6920 usec 144

Intel i5-2500K
3.3 Ghz

802 nsec 4010 usec 249

AMD A8-6410 
2.0 GHz

1749 nsec 8749 usec 114

Intel i5-6200 2.3GHz 762 nsec 3810 usec 262

BENCHMARK PERFORMANCE
(VB.NET - Native x86 Code, single thread on CPUs)
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Author's Queuing Simulator (5 servers, 5 Buffers, Sources & Sinks)
~1987 Boston University.  Boy, I wish I had FPGAs back then!


