

 The Problem – Optimizing Airplane Boarding

1) It can take a lot of simulations to optimize a system, especially
 if genetic or evolutionary methods are used.

2) These simulations can be very time consuming (hours, days).
 3) Methods of speeding up discrete simulations?

 Paths to Parallel Computing:

1) GA/EAs evaluate a lot of models independently, just throw each simulation
 model on a separate processor (embarassingly easy parallelism!).
2) Try to parallelize individual models. Interprocess communications can take

 more time than the model proper (dumb & hard parallelism)
3) Parallel Discrete Event models – This can get complex and can

have diminishing returns quickly depending on model structure.
 4) Specialized Computing Hardware. (Brute force & Ignorance)

 That Is this project !

 Favorable Model Characteristics:

1) Model can be decomposed to simple state machines.
2) Mostly static topology – limited or no dynamic reconfiguration.
3) Short data words. (no floating point!)
4) Limited data passed between state machines.
5) Ratio of model computation to transferred data high – otherwise host

CPU becomes bottleneck,

Calculate
New State

Update State

All Passengers
Seated?

SimTime += dT

Initialize Cabin
& Boarding Queue

Done

Start

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

A

M

W

W

M

A

1 2 3 41 27 28 29 30

BOARDING QUEUE

Structure PassengerType
 Row As Integer
 Seat As Integer

Structure SeatType
 Occupied As Boolean

1

2

3

4

5

6

CABIN SEATING ARRAY

AISLE

Structure AisleSlot
 State As AisleState
 Timer As Integer
 Passenger As PassengerType

Each 'Aisle Slot' is modeled as a state machine that allows for blocking behavior. Key parameters are:

Passenger Advance Time – How fast the passenger moves down the aisle when not blocked. (assumed
uniform for all passengers)

Seating Time – how long it takes a passenger to move from the aisle to his seat when he arrives at his
seating row. This time is dependent on how many people he needs to bypass to get to his seat (0, 1 or 2)

Aisle Cell Communications

'Time-driven' Simulation Flow
Aisle Cell

AN

Aisle Cell
AN+1

Passenger Record

Available

Accept

A

M

W

W

M

A

Seating
Array
registers

Seating
Array
registers

From
Previous
Aisle
Cell

To Next
Aisle
Cell

Aisle State Machine

Empty

Timer
(substate)

Next slot EMPTY
Passenger
Accepted

Timer expired

Set timer to
Seating Time

Set timer to
Advance Time

Full

Ready to
Advance

Blocked

SeatingPassenger
Available

Seating row

Passenger
Available

NOT Seating row

Seat Passenger

Timer expired

Design and Specification
Of Logic in Hardware Design Language
(Verilog example)

1) Compilation to primitives & netlist
2) 'Fitting' into target FPGA
3) Generating 'bitstream'
4) Downloading to blank chip
5) 'Rinse and Repeat' until it works

 Software simulation of the logic design is a big help here!

'Floorplan' showing utilization of
FPGA logic cells & physical

locations on chip

Cell Interconnection Diagram
(bird's eye view!)

Cell detail showing internal logic & routing.
Each cell shown above contains 4 of these

blocks.
Each block has two 4-input logic look-up

tables and two flip-flops (single-bit registers)

The FPGA has a total of 3432 of these blocks.

Dedicated 9kbit memory (RAM/ROM)
The FPGA has a total of 240kbits

Looks like C, but with some BIG differences....

1) Not just a sequential process, but a mixture of
 seqential and continuous processes.

2) Allows for event-driven processes at a fine granular
 level (ex: always @(xxxx) construct)

3) Defines intrinsically parallel processes –
None of this processor task-switching nonsense!

4) Not every valid 'program' you can write can be realized
in an FPGA (must understand hardware capabilities!)

Queue Generator

Random,
Back-to-Front
Outer-to-Inner

Cabin Model

Control
Logic

Master Clock (dT)
44MHz, 2.7kHz,

170Hz, 10Hz

Display
Control

Simulation
Timer

LED Display

Control Status

User control switches
Start/Stop/Clear, Shuffle Queue, Clock Speed, Zone System

FPGA
Lattice Semiconductor
Mach XO2-7000

Cabin Display LEDs
● Blue LEDs are seats
● Aisle LEDs are either OFF(empty),
 Green (Occupied), Red (Blocked)

Sim Time
Boarding

Order
Select

Clock Rate
Select

Enable
Shuffle

Run
Control

SYSTEM/CPU 'dT' Execution
Time

Time for 5000 'dT'
Simulation

Number of 5000 'dT'
simulations per

second

FPGA Demo
44.3 Mhz clock

22.6 nsec 112 usec 8929

Intel E5300 2.6GHz 1384 nsec 6920 usec 144

Intel i5-2500K
3.3 Ghz

802 nsec 4010 usec 249

AMD A8-6410
2.0 GHz

1749 nsec 8749 usec 114

Intel i5-6200 2.3GHz 762 nsec 3810 usec 262

BENCHMARK PERFORMANCE
(VB.NET - Native x86 Code, single thread on CPUs)

Further Reading – Hardware-assisted Simulation:
.

M. Ruane, E. Ramsden, H. D'Angelo, A. Mavretic, "The Factory on an Integrated Circuit Chip", 1985 IEEE Proceedings of The
International Conference on Cybernetics and Society.

E. Ramsden, M. Ruane, M.Caramanis, H. D'Angelo, A.Mavretic, "The Use of Hardware Simulators in Modeling Production
Networks", Large Scale Systems Journal, Special Issue on Manufacturing Systems, vol 11, 1986, pp. 149-164.

E. Ramsden, M. Ruane, H. D'Angelo, M. Caramanis, A. Mavretic, "A Digital Production System Simulation Engine", 1986 IEEE
Proceedings of the International Conference on Systems, Man, and Cybernetics, Atlanta, Georgia, October 14-18, 1986.

G.F. Pfister, “The IBM Yorktown Simulation Engine“, Proceedings of the IEEE, vol 74. no. 6, June 1986, pp. 850-860.

T.Toffoli, N.Margolus, “Cellular Automata Machines“, MIT Press, Cambridge MA, 1987.

Author's Queuing Simulator (5 servers, 5 Buffers, Sources & Sinks)
~1987 Boston University. Boy, I wish I had FPGAs back then!

